Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 92
Filter
1.
Acta Neuropsychiatr ; : 1-13, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38571295

ABSTRACT

BACKGROUND: Persistent infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), reactivation of dormant viruses, and immune-oxidative responses are involved in long COVID. OBJECTIVES: To investigate whether long COVID and depressive, anxiety, and chronic fatigue syndrome (CFS) symptoms are associated with IgA/IgM/IgG to SARS-CoV-2, human herpesvirus type 6 (HHV-6), Epstein-Barr Virus (EBV), and immune-oxidative biomarkers. METHODS: We examined 90 long COVID patients and ninety healthy controls. We measured serum IgA/IgM/IgG against HHV-6 and EBV and their deoxyuridine 5'-triphosphate nucleotidohydrolase (duTPase), SARS-CoV-2, and activin-A, C-reactive protein (CRP), advanced oxidation protein products (AOPP), and insulin resistance (HOMA2-IR). RESULTS: Long COVID patients showed significant elevations in IgG/IgM-SARS-CoV-2, IgG/IgM-HHV-6, and HHV-6-duTPase, IgA/IgM-activin-A, CRP, AOPP, and HOMA2-IR. Neural network analysis yielded a highly significant predictive accuracy of 80.6% for the long COVID diagnosis (sensitivity: 78.9%, specificity: 81.8%, area under the ROC curve = 0.876); the topmost predictors were as follows: IGA-activin-A, IgG-HHV-6, IgM-HHV-6-duTPase, IgG-SARS-CoV-2, and IgM-HHV-6 (all positively) and a factor extracted from all IgA levels to all viral antigens (inversely). The top 5 predictors of affective symptoms due to long COVID were IgM-HHV-6-duTPase, IgG-HHV-6, CRP, education, IgA-activin-A (predictive accuracy of r = 0.636). The top 5 predictors of CFS due to long COVID were in descending order: CRP, IgG-HHV-6-duTPase, IgM-activin-A, IgM-SARS-CoV-2, and IgA-activin-A (predictive accuracy: r = 0.709). CONCLUSION: Reactivation of HHV-6, SARS-CoV-2 persistence, and autoimmune reactions to activin-A combined with activated immune-oxidative pathways play a major role in the pathophysiology of long COVID as well as the severity of its affective symptoms and CFS.

2.
Microorganisms ; 12(2)2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38399642

ABSTRACT

Gut luminal dysbiosis and pathobiosis result in compositional and biodiversified alterations in the microbial and host co-metabolites. The primary mechanism of bacterial evolution is horizontal gene transfer (HGT), and the acquisition of new traits can be achieved through the exchange of mobile genetic elements (MGEs). Introducing genetically engineered microbes (GEMs) might break the harmonized balance in the intestinal compartment. The present objectives are: 1. To reveal the role played by the GEMs' horizontal gene transfers in changing the landscape of the enteric microbiome eubiosis 2. To expand on the potential detrimental effects of those changes on the human genome and health. A search of articles published in PubMed/MEDLINE, EMBASE, and Scielo from 2000 to August 2023 using appropriate MeSH entry terms was performed. The GEMs' horizontal gene exchanges might induce multiple human diseases. The new GEMs can change the long-term natural evolution of the enteric pro- or eukaryotic cell inhabitants. The worldwide regulatory authority's safety control of GEMs is not enough to protect public health. Viability, biocontainment, and many other aspects are only partially controlled and harmful consequences for public health should be avoided. It is important to remember that prevention is the most cost-effective strategy and primum non nocere should be the focus.

3.
Front Neurol ; 15: 1294689, 2024.
Article in English | MEDLINE | ID: mdl-38379706

ABSTRACT

Introduction: Delirium is accompanied by immune response system activation, which may, in theory, cause a breakdown of the gut barrier and blood-brain barrier (BBB). Some results suggest that the BBB is compromised in delirium, but there is no data regarding the gut barrier. This study investigates whether delirium is associated with impaired BBB and gut barriers in elderly adults undergoing hip fracture surgery. Methods: We recruited 59 older adults and measured peak Delirium Rating Scale (DRS) scores 2-3 days after surgery, and assessed plasma IgG/IgA levels (using ELISA techniques) for zonulin, occludin, claudin-6, ß-catenin, actin (indicating damage to the gut paracellular pathway), claudin-5 and S100B (reflecting BBB damage), bacterial cytolethal distending toxin (CDT), LPS-binding protein (LBP), lipopolysaccharides (LPS), Porphyromonas gingivalis, and Helicobacter pylori. Results: Results from univariate analyses showed that delirium is linked to increased IgA responses to all the self-epitopes and antigens listed above, except for LPS. Part of the variance (between 45-48.3%) in the peak DRS score measured 2-3 days post-surgery was explained by independent effects of IgA directed to LPS and LBP (or bacterial CDT), baseline DRS scores, and previous mild stroke. Increased IgA reactivity to the paracellular pathway and BBB proteins and bacterial antigens is significantly associated with the activation of M1 macrophage, T helper-1, and 17 cytokine profiles. Conclusion: Heightened bacterial translocation, disruption of the tight and adherens junctions of the gut and BBB barriers, elevated CDT and LPS load in the bloodstream, and aberrations in cell-cell interactions may be risk factors for delirium.

4.
Microorganisms ; 12(1)2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38276215

ABSTRACT

Natural killer (NK) cells and cytotoxic T (CD8+) cells are two of the most important types of immune cells in our body, protecting it from deadly invaders. While the NK cell is part of the innate immune system, the CD8+ cell is one of the major components of adaptive immunity. Still, these two very different types of cells share the most important function of destroying pathogen-infected and tumorous cells by releasing cytotoxic granules that promote proteolytic cleavage of harmful cells, leading to apoptosis. In this review, we look not only at NK and CD8+ T cells but also pay particular attention to their different subpopulations, the immune defenders that include the CD56+CD16dim, CD56dimCD16+, CD57+, and CD57+CD16+ NK cells, the NKT, CD57+CD8+, and KIR+CD8+ T cells, and ILCs. We examine all these cells in relation to their role in the protection of the body against different microorganisms and cancer, with an emphasis on their mechanisms and their clinical importance. Overall, close collaboration between NK cells and CD8+ T cells may play an important role in immune function and disease pathogenesis. The knowledge of how these immune cells interact in defending the body against pathogens and cancers may help us find ways to optimize their defensive and healing capabilities with methods that can be clinically applied.

5.
Microorganisms ; 11(12)2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38138121

ABSTRACT

The SARS-CoV-2 pandemic continues to pose a global threat. While its virulence has subsided, it has persisted due to the continual emergence of new mutations. Although many high-risk conditions related to COVID-19 have been identified, the understanding of protective factors remains limited. Intriguingly, epidemiological evidence suggests a low incidence of COVID-19-infected CD patients. The present study explores whether their genetic background, namely, the associated HLA-DQs, offers protection against severe COVID-19 outcomes. We hypothesize that the HLA-DQ2/8 alleles may shield CD patients from SARS-CoV-2 and its subsequent effects, possibly due to memory CD4 T cells primed by previous exposure to human-associated common cold coronaviruses (CCC) and higher affinity to those allele's groove. In this context, we examined potential cross-reactivity between SARS-CoV-2 epitopes and human-associated CCC and assessed the binding affinity (BA) of these epitopes to HLA-DQ2/8. Using computational methods, we analyzed sequence similarity between SARS-CoV-2 and four distinct CCC. Of 924 unique immunodominant 15-mer epitopes with at least 67% identity, 37 exhibited significant BA to HLA-DQ2/8, suggesting a protective effect. We present various mechanisms that might explain the protective role of HLA-DQ2/8 in COVID-19-afflicted CD patients. If substantiated, these insights could enhance our understanding of the gene-environment enigma and viral-host relationship, guiding potential therapeutic innovations against the ongoing SARS-CoV-2 pandemic.

6.
Sci Rep ; 13(1): 17526, 2023 10 16.
Article in English | MEDLINE | ID: mdl-37845267

ABSTRACT

Microbial transglutaminase (mTG) is a bacterial survival factor, frequently used as a food additive to glue processed nutrients. As a result, new immunogenic epitopes are generated that might drive autoimmunity. Presently, its contribution to autoimmunity through epitope similarity and cross-reactivity was investigated. Emboss Matcher was used to perform sequence alignment between mTG and various antigens implicated in many autoimmune diseases. Monoclonal and polyclonal antibodies made specifically against mTG were applied to 77 different human tissue antigens using ELISA. Six antigens were detected to share significant homology with mTG immunogenic sequences, representing major targets of common autoimmune conditions. Polyclonal antibody to mTG reacted significantly with 17 out of 77 tissue antigens. This reaction was most pronounced with mitochondrial M2, ANA, and extractable nuclear antigens. The results indicate that sequence similarity and cross-reactivity between mTG and various tissue antigens are possible, supporting the relationship between mTG and the development of autoimmune disorders 150W.


Subject(s)
Autoimmune Diseases , Transglutaminases , Humans , Antigens , Epitopes , Antibodies
7.
NPJ Aging ; 9(1): 21, 2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37620330

ABSTRACT

Age is a significant risk factor for the coronavirus disease 2019 (COVID-19) severity due to immunosenescence and certain age-dependent medical conditions (e.g., obesity, cardiovascular disorder, and chronic respiratory disease). However, despite the well-known influence of age on autoantibody biology in health and disease, its impact on the risk of developing severe COVID-19 remains poorly explored. Here, we performed a cross-sectional study of autoantibodies directed against 58 targets associated with autoimmune diseases in 159 individuals with different COVID-19 severity (71 mild, 61 moderate, and 27 with severe symptoms) and 73 healthy controls. We found that the natural production of autoantibodies increases with age and is exacerbated by SARS-CoV-2 infection, mostly in severe COVID-19 patients. Multiple linear regression analysis showed that severe COVID-19 patients have a significant age-associated increase of autoantibody levels against 16 targets (e.g., amyloid ß peptide, ß catenin, cardiolipin, claudin, enteric nerve, fibulin, insulin receptor a, and platelet glycoprotein). Principal component analysis with spectrum decomposition and hierarchical clustering analysis based on these autoantibodies indicated an age-dependent stratification of severe COVID-19 patients. Random forest analysis ranked autoantibodies targeting cardiolipin, claudin, and platelet glycoprotein as the three most crucial autoantibodies for the stratification of severe COVID-19 patients ≥50 years of age. Follow-up analysis using binomial logistic regression found that anti-cardiolipin and anti-platelet glycoprotein autoantibodies significantly increased the likelihood of developing a severe COVID-19 phenotype with aging. These findings provide key insights to explain why aging increases the chance of developing more severe COVID-19 phenotypes.

8.
Biomedicines ; 11(7)2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37509576

ABSTRACT

The gastrointestinal tract can be heavily infected by SARS-CoV-2. Being an auto-immunogenic virus, SARS-CoV-2 represents an environmental factor that might play a role in gut-associated autoimmune diseases. However, molecular mimicry between the virus and the intestinal epitopes is under-investigated. The present study aims to elucidate sequence similarity between viral antigens and human enteric sequences, based on known cross-reactivity. SARS-CoV-2 epitopes that cross-react with human gut antigens were explored, and sequence alignment was performed against self-antigens implicated in enteric autoimmune conditions. Experimental SARS-CoV-2 epitopes were aggregated from the Immune Epitope Database (IEDB), while enteric antigens were obtained from the UniProt Knowledgebase. A Pairwise Local Alignment tool, EMBOSS Matcher, was employed for the similarity search. Sequence similarity and targeted cross-reactivity were depicted between 10 pairs of immunoreactive epitopes. Similar pairs were found in four viral proteins and seven enteric antigens related to ulcerative colitis, primary biliary cholangitis, celiac disease, and autoimmune hepatitis. Antibodies made against the viral proteins that were cross-reactive with human gut antigens are involved in several essential cellular functions. The relationship and contribution of those intestinal cross-reactive epitopes to SARS-CoV-2 or its potential contribution to gut auto-immuno-genesis are discussed.

9.
J Med Virol ; 95(2): e28538, 2023 02.
Article in English | MEDLINE | ID: mdl-36722456

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is associated with increased levels of autoantibodies targeting immunological proteins such as cytokines and chemokines. Reports further indicate that COVID-19 patients may develop a broad spectrum of autoimmune diseases due to reasons not fully understood. Even so, the landscape of autoantibodies induced by SARS-CoV-2 infection remains uncharted territory. To gain more insight, we carried out a comprehensive assessment of autoantibodies known to be linked to diverse autoimmune diseases observed in COVID-19 patients in a cohort of 231 individuals, of which 161 were COVID-19 patients (72 with mild, 61 moderate, and 28 with severe disease) and 70 were healthy controls. Dysregulated IgG and IgA autoantibody signatures, characterized mainly by elevated concentrations, occurred predominantly in patients with moderate or severe COVID-19 infection. Autoantibody levels often accompanied anti-SARS-CoV-2 antibody concentrations while stratifying COVID-19 severity as indicated by random forest and principal component analyses. Furthermore, while young versus elderly COVID-19 patients showed only slight differences in autoantibody levels, elderly patients with severe disease presented higher IgG autoantibody concentrations than young individuals with severe COVID-19. This work maps the intersection of COVID-19 and autoimmunity by demonstrating the dysregulation of multiple autoantibodies triggered during SARS-CoV-2 infection. Thus, this cross-sectional study suggests that SARS-CoV-2 infection induces autoantibody signatures associated with COVID-19 severity and several autoantibodies that can be used as biomarkers of COVID-19 severity, indicating autoantibodies as potential therapeutical targets for these patients.


Subject(s)
Autoimmune Diseases , COVID-19 , Aged , Humans , Autoantibodies , Cross-Sectional Studies , SARS-CoV-2 , Immunoglobulin G
10.
Exp Dermatol ; 32(6): 722-730, 2023 06.
Article in English | MEDLINE | ID: mdl-36811352

ABSTRACT

Ultraviolet B exposure to keratinocytes promotes carcinogenesis by inducing pyrimidine dimer lesions in DNA, suppressing the nucleotide excision repair mechanism required to fix them, inhibiting the apoptosis required for the elimination of initiated cells, and driving cellular proliferation. Certain nutraceuticals - most prominently spirulina, soy isoflavones, long-chain omega-3 fatty acids, the green tea catechin epigallocatechin gallate (EGCG) and Polypodium leucotomos extract - have been shown to oppose photocarcinogenesis, as well as sunburn and photoaging, in UVB-exposed hairless mice. It is proposed that spirulina provides protection in this regard via phycocyanobilin-mediated inhibition of Nox1-dependent NADPH oxidase; that soy isoflavones do so by opposing NF-κB transcriptional activity via oestrogen receptor-beta; that the benefit of eicosapentaenoic acid reflects decreased production of prostaglandin E2; and that EGCG counters UVB-mediated phototoxicity via inhibition of the epidermal growth factor receptor. The prospects for practical nutraceutical down-regulation of photocarcinogenesis, sunburn, and photoaging appear favourable.


Subject(s)
Isoflavones , Sunburn , Animals , Mice , Ultraviolet Rays/adverse effects , Keratinocytes/metabolism , Dietary Supplements , Mice, Hairless
11.
Diagnostics (Basel) ; 13(4)2023 Feb 12.
Article in English | MEDLINE | ID: mdl-36832180

ABSTRACT

BACKGROUND: COVID-19 is a heterogenous disease resulting in long-term sequela in predisposed individuals. It is not uncommon that recovering patients endure non-respiratory ill-defined manifestations, including anosmia, and neurological and cognitive deficit persisting beyond recovery-a constellation of conditions that are grouped under the umbrella of long-term COVID-19 syndrome. Association between COVID-19 and autoimmune responses in predisposed individuals was shown in several studies. AIM AND METHODS: To investigate autoimmune responses against neuronal and CNS autoantigens in SARS-CoV-2-infected patients, we performed a cross-sectional study with 246 participants, including 169 COVID-19 patients and 77 controls. Levels of antibodies against the acetylcholine receptor, glutamate receptor, amyloid ß peptide, alpha-synucleins, dopamine 1 receptor, dopamine 2 receptor, tau protein, GAD-65, N-methyl D-aspartate (NMDA) receptor, BDNF, cerebellar, ganglioside, myelin basic protein, myelin oligodendrocyte glycoprotein, S100-B, glial fibrillary acidic protein, and enteric nerve were measured using an Enzyme-Linked Immunosorbent Assay (ELISA). Circulating levels of autoantibodies were compared between healthy controls and COVID-19 patients and then classified by disease severity (mild [n = 74], severe [n = 65], and requiring supplemental oxygen [n = 32]). RESULTS: COVID-19 patients were found to have dysregulated autoantibody levels correlating with the disease severity, e.g., IgG to dopamine 1 receptor, NMDA receptors, brain-derived neurotrophic factor, and myelin oligodendrocyte glycoprotein. Elevated levels of IgA autoantibodies against amyloid ß peptide, acetylcholine receptor, dopamine 2 receptor, myelin basic protein, and α-synuclein were detected in COVID-19 patients compared with healthy controls. Lower IgA autoantibody levels against NMDA receptors, and IgG autoantibodies against glutamic acid decarboxylase 65, amyloid ß peptide, tau protein, enteric nerve, and S100-B were detected in COVID-19 patients versus healthy controls. Some of these antibodies have known clinical correlations with symptoms commonly reported in the long COVID-19 syndrome. CONCLUSIONS: Overall, our study shows a widespread dysregulation in the titer of various autoantibodies against neuronal and CNS-related autoantigens in convalescent COVID-19 patients. Further research is needed to provide insight into the association between these neuronal autoantibodies and the enigmatic neurological and psychological symptoms reported in COVID-19 patients.

12.
Viruses ; 15(2)2023 01 31.
Article in English | MEDLINE | ID: mdl-36851614

ABSTRACT

A novel syndrome called long-haul COVID or long COVID is increasingly recognized in a significant percentage of individuals within a few months after infection with SARS-CoV-2. This disorder is characterized by a wide range of persisting, returning or even new but related symptoms that involve different tissues and organs, including respiratory, cardiac, vascular, gastrointestinal, musculo-skeletal, neurological, endocrine and systemic. Some overlapping symptomatologies exist between long COVID and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Very much like with long ME/CFS, infections with herpes family viruses, immune dysregulation, and the persistence of inflammation have been reported as the most common pattern for the development of long COVID. This review describes several factors and determinants of long COVID that have been proposed, elaborating mainly on viral persistence, reactivation of latent viruses such as Epstein-Barr virus and human herpesvirus 6 which are also associated with the pathology of ME/CFS, viral superantigen activation of the immune system, disturbance in the gut microbiome, and multiple tissue damage and autoimmunity. Based on these factors, we propose diagnostic strategies such as the measurement of IgG and IgM antibodies against SARS-CoV-2, EBV, HHV-6, viral superantigens, gut microbiota, and biomarkers of autoimmunity to better understand and manage this multi-factorial disorder that continues to affect millions of people in the world.


Subject(s)
COVID-19 , Epstein-Barr Virus Infections , Fatigue Syndrome, Chronic , Herpesvirus 6, Human , Humans , Post-Acute COVID-19 Syndrome , Herpesvirus 4, Human , Autoimmunity , Epstein-Barr Virus Infections/complications , SARS-CoV-2 , Inflammation
13.
CNS Neurol Disord Drug Targets ; 22(2): 215-225, 2023.
Article in English | MEDLINE | ID: mdl-35946099

ABSTRACT

BACKGROUND: A meaningful part of schizophrenia patients suffer from physiosomatic symptoms (formerly named psychosomatic), which are reminiscent of chronic fatigue syndrome and fibromyalgia (FF) and are associated with signs of immune activation and increased levels of tryptophan catabolites (TRYCATs). AIMS: The study aims to examine whether FF symptoms in schizophrenia are associated with the breakdown of the paracellular pathway, zonulin, lowered natural IgM responses to oxidative specific epitopes (OSEs); and whether FF symptoms belong to the behavioral-cognitive-physical-psychosocial- (BCPS)-worsening index consisting of indices of a general cognitive decline (G-CoDe), symptomatome of schizophrenia, and quality of life (QoL)-phenomenome. METHODS: FF symptoms were assessed using the Fibromyalgia and Chronic Fatigue Rating scale in 80 schizophrenia patients and 40 healthy controls and serum cytokines/chemokines, IgA levels to TRYCATs, IgM to OSEs, zonulin and transcellular/paracellular (TRANS/PARA) molecules were assayed using ELISA methods. RESULTS: A large part (42.3%) of the variance in the total FF score was explained by the regression on the PARA/TRANS ratio, pro-inflammatory cytokines, IgM to zonulin, IgA to TRYCATs (all positively), and IgM to OSEs (inversely). There were highly significant correlations between the total FF score and G-CoDe, symtopmatome, QoL phenomenome, and BCPS-worsening score. FF symptoms belong to a common core shared by G-CoDe, symtopmatome, and QoL phenomenome. CONCLUSION: The physio-somatic symptoms of schizophrenia are driven by various pathways, including increased zonulin, breakdown of the paracellular tight-junctions pathway, immune activation with induction of the TRYCAT pathway, and consequent neurotoxicity. It is concluded that FF symptoms are part of the phenome of schizophrenia and BCPS-worsening as well.


Subject(s)
Fatigue Syndrome, Chronic , Schizophrenia , Humans , Quality of Life , Schizophrenia/complications
14.
Eur Geriatr Med ; 14(1): 99-112, 2023 02.
Article in English | MEDLINE | ID: mdl-36520371

ABSTRACT

OBJECTIVES: Activation of the immune-inflammatory response system (IRS) and a deficiency in the compensatory immunoregulatory system (CIRS), neuronal injuries, and alterations in the glutamate receptor (GlutaR), aquaporin-4 (AQP4) and heat shock protein 60 (HSP60) are involved in delirium. Increased serum levels of neurofilament protein (NFP), glial fibrillary acidic protein (GFAP) and myelin basic protein (MBP) are biomarkers of neuronal injury. This investigation delineates whether elevated IgA/IgG reactivity against those self-antigens is associated with delirium severity and IRS activation. METHODS: We measured peak Delirium Rating Scale (DRS) scores on days 2 and 3 following surgery in 59 hip fractured older adults, and IgA and IgG antibody levels against MBP, NFP, GFAP and myelin oligodendrocyte glycoprotein (MOG), metabotropic glutamate receptors mGluRs 1 and 5, N-Methyl-D-Aspartate receptor (NMDAR) GLU1 (NR1) and GLU2 (NR2), APQ4 and HSP60. RESULTS: The IgA antibody levels against those self-antigens, especially GFAP, MBP and HSP60, strongly predict peak DRS scores on days 2 and 3 post-surgery. IgA reactivity against NMDAR and baseline DRS scores explained 40.6% of the variance in peak DRS scores, while IgA against NMDAR, IgG against MBP and age explained 29.1% of the variance in the IRS/CIRS ratio. There was no correlation between DRS scores and IgG directed against other self-antigens. CONCLUSIONS: Increased IgA levels against neuronal self-antigens, AQP4 and HSP60 are risk factors for delirium. Polyreactive antibody-associated breakdown of immune tolerance, IRS activation and injuries in the neuronal cytoskeleton, oligodendrocytes, astrocytes, glial cells, and myelin sheath are involved in the pathophysiology of delirium.


Subject(s)
Aquaporin 4 , Delirium , Humans , Aquaporin 4/metabolism , Chaperonin 60/metabolism , Delirium/etiology , Epitopes , Immunoglobulin A/metabolism , Immunoglobulin G/metabolism , Myelin-Oligodendrocyte Glycoprotein/metabolism , Neurofilament Proteins/metabolism
15.
Front Immunol ; 13: 1003094, 2022.
Article in English | MEDLINE | ID: mdl-36211404

ABSTRACT

It has been shown that SARS-CoV-2 shares homology and cross-reacts with vaccines, other viruses, common bacteria and many human tissues. We were inspired by these findings, firstly, to investigate the reaction of SARS-CoV-2 monoclonal antibody with different pathogens and vaccines, particularly DTaP. Additionally, since our earlier studies have shown immune reactivity by antibodies made against pathogens and autoantigens towards different food antigens, we also studied cross-reaction between SARS-CoV-2 and common foods. For this, we reacted monoclonal and polyclonal antibodies against SARS-CoV-2 spike protein and nucleoprotein with 15 different bacterial and viral antigens and 2 different vaccines, BCG and DTaP, as well as with 180 different food peptides and proteins. The strongest reaction by SARS-CoV-2 antibodies were with DTaP vaccine antigen, E. faecalis, roasted almond, broccoli, soy, cashew, α+ß casein and milk, pork, rice endochitinase, pineapple bromelain, and lentil lectin. Because the immune system tends to form immune responses towards the original version of an antigen that it has encountered, this cross-reactivity may have its advantages with regards to immunity against SARS-CoV-2, where the SARS-CoV-2 virus may elicit a "remembered" immune response because of its structural similarity to a pathogen or food antigen to which the immune system was previously exposed. Our findings indicate that cross-reactivity elicited by DTaP vaccines in combination with common herpesviruses, bacteria that are part of our normal flora such as E. faecalis, and foods that we consume on a daily basis should be investigated for possible cross-protection against COVID-19. Additional experiments would be needed to clarify whether or not this cross-protection is due to cross-reactive antibodies or long-term memory T and B cells in the blood.


Subject(s)
COVID-19 , Chitinases , Diphtheria-Tetanus-acellular Pertussis Vaccines , Antibodies, Monoclonal , Antibodies, Viral , Antigens, Viral , Autoantigens , BCG Vaccine , Bromelains , COVID-19/prevention & control , Caseins , Hepatitis B e Antigens , Humans , Nucleoproteins , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
16.
Pathophysiology ; 29(2): 243-280, 2022 Jun 03.
Article in English | MEDLINE | ID: mdl-35736648

ABSTRACT

In our continuing examination of the role of exposomes in autoimmune disease, we use this review to focus on pathogens. Infections are major contributors to the pathophysiology of autoimmune diseases through various mechanisms, foremost being molecular mimicry, when the structural similarity between the pathogen and a human tissue antigen leads to autoimmune reactivity and even autoimmune disease. The three best examples of this are oral pathogens, SARS-CoV-2, and the herpesviruses. Oral pathogens reach the gut, disturb the microbiota, increase gut permeability, cause local inflammation, and generate autoantigens, leading to systemic inflammation, multiple autoimmune reactivities, and systemic autoimmunity. The COVID-19 pandemic put the spotlight on SARS-CoV-2, which has been called "the autoimmune virus." We explore in detail the evidence supporting this. We also describe how viruses, in particular herpesviruses, have a role in the induction of many different autoimmune diseases, detailing the various mechanisms involved. Lastly, we discuss the microbiome and the beneficial microbiota that populate it. We look at the role of the gut microbiome in autoimmune disorders, because of its role in regulating the immune system. Dysbiosis of the microbiota in the gut microbiome can lead to multiple autoimmune disorders. We conclude that understanding the precise roles and relationships shared by all these factors that comprise the exposome and identifying early events and root causes of these disorders can help us to develop more targeted therapeutic protocols for the management of this worldwide epidemic of autoimmunity.

18.
Nat Commun ; 13(1): 1220, 2022 03 09.
Article in English | MEDLINE | ID: mdl-35264564

ABSTRACT

COVID-19 shares the feature of autoantibody production with systemic autoimmune diseases. In order to understand the role of these immune globulins in the pathogenesis of the disease, it is important to explore the autoantibody spectra. Here we show, by a cross-sectional study of 246 individuals, that autoantibodies targeting G protein-coupled receptors (GPCR) and RAS-related molecules associate with the clinical severity of COVID-19. Patients with moderate and severe disease are characterized by higher autoantibody levels than healthy controls and those with mild COVID-19 disease. Among the anti-GPCR autoantibodies, machine learning classification identifies the chemokine receptor CXCR3 and the RAS-related molecule AGTR1 as targets for antibodies with the strongest association to disease severity. Besides antibody levels, autoantibody network signatures are also changing in patients with intermediate or high disease severity. Although our current and previous studies identify anti-GPCR antibodies as natural components of human biology, their production is deregulated in COVID-19 and their level and pattern alterations might predict COVID-19 disease severity.


Subject(s)
Autoantibodies/immunology , COVID-19/immunology , Receptors, G-Protein-Coupled/immunology , Renin-Angiotensin System/immunology , Autoantibodies/blood , Autoimmunity , Biomarkers/blood , COVID-19/blood , COVID-19/classification , Cross-Sectional Studies , Female , Humans , Machine Learning , Male , Multivariate Analysis , Receptor, Angiotensin, Type 1/immunology , Receptors, CXCR3/immunology , SARS-CoV-2 , Severity of Illness Index
19.
Toxics ; 9(9)2021 Sep 04.
Article in English | MEDLINE | ID: mdl-34564363

ABSTRACT

Aluminum is in our water and food, and is used as an adjuvant in vaccines. About 40% of the ingested dose accumulates within the intestinal mucosa, making the gut the main target of inflammation and autoimmunity; about 1% accumulates in the skeletal system and brain, inducing the cross-linking of amyloid-ß-42 peptide and the formation of amyloid aggregates associated with Alzheimer's disease. To examine whether the accumulation of aluminum in the gut and brain tissues results in neoantigen formation, we bound aluminum compounds to human serum albumin. We used ELISA to measure IgG antibody in 94 different sera from healthy controls and 47 sera from each group of patients: anti-Saccharomyces cerevisiae antibody-positive (Crohn's), and positive for deamidated α-gliadin and transglutaminase-2 IgA antibodies (celiac disease), autoimmune disorders associated with intestinal tissue antigens. Because earlier studies have shown that aluminum exposure is linked to Alzheimer's disease etiology, and high aluminum content is detected in Alzheimer's patients' brain tissue, we also measured aluminum antibody in the blood of these patients. Additionally, we measured aluminum antibody in the sera of mixed connective tissue disease patients who were positive for antinuclear antibodies, and used them as disease controls. We found significant IgG antibody elevation against all three aluminum compounds in the sera of patients with Crohn's, celiac and Alzheimer's disease, but not in patients with mixed connective tissue disease. We concluded that aluminum ingestion and absorption from the GI tract and brain may contribute to Crohn's, celiac and Alzheimer's disease, but not to mixed connective tissue disease.

20.
Cells ; 10(5)2021 05 05.
Article in English | MEDLINE | ID: mdl-34063062

ABSTRACT

INTRODUCTION: Parkinson's disease is characterized by non-motor/motor dysfunction midbrain neuronal death and α-synuclein deposits. The accepted hypothesis is that unknown environmental factors induce α-synuclein accumulation in the brain via the enteric nervous system. MATERIAL AND METHODS: Monoclonal antibodies made against recombinant α-synuclein protein or α-synuclein epitope 118-123 were applied to the antigens of 180 frequently consumed food products. The specificity of those antibody-antigen reactions was confirmed by serial dilution and inhibition studies. The Basic Local Alignment Search Tool sequence matching program was used for sequence homologies. RESULTS: While the antibody made against recombinant α-synuclein reacted significantly with 86/180 specific food antigens, the antibody made against α-synuclein epitope 118-123 reacted with only 32/180 tested food antigens. The food proteins with the greatest number of peptides that matched with α-synuclein were yeast, soybean, latex hevein, wheat germ agglutinin, potato, peanut, bean agglutinin, pea lectin, shrimp, bromelain, and lentil lectin. Conclusions: The cross-reactivity and sequence homology between α-synuclein and frequently consumed foods, reinforces the autoimmune aspect of Parkinson's disease. It is hypothesized that luminal food peptides that share cross-reactive epitopes with human α-synuclein and have molecular similarity with brain antigens are involved in the synucleinopathy. The findings deserve further confirmation by extensive research.


Subject(s)
Allergens/immunology , Antigen-Antibody Reactions , Dietary Proteins/immunology , Sequence Homology, Amino Acid , alpha-Synuclein/immunology , Allergens/chemistry , Cross Reactions , Dietary Proteins/chemistry , Epitopes/chemistry , Epitopes/immunology , Food , Humans , alpha-Synuclein/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...